プロポーザル

これは応募されたプロポーザルです。聞きたいと思うプロポーザルを各ページの下部にあるSNSのボタンで拡散しましょう。拡散された投稿をプロポーザルへの投票としてカウントし、選考時に参考にさせていただきます。

talk

Find the Farm (Data Science Insights into Real Estate Pricing)(en)

スピーカー

en zyme

対象レベル:

初級

カテゴリ:

Business

説明

Real estate transactions are geographically and temporally sparse. There is often both a listing and a selling agent. Pricing models typically rely on physical parameters; there has been little work done in assessing the contribution of the realtor. A realtor 'farm' may be discoverable by cluster identification, and analyzed for negotiation strength in listing and sales prices.

目的

This talk is for anyone interested in simple yet novel approaches to data science. Relatively little Python knowledge is expected, as the work consists of importing modules, plotting, comprehensions, and leveraging simple data science concepts. It should be a great intro to the person who would like a concrete approach to data exploration. Home ownership is the largest transaction, yet there is little data available concerning the effectiveness of realtors. The audience will have a start on utilizing geographic tools for discovering relationships that might not be otherwise obvious.

概要

Using gmplot, geopy, and Python data science tools we'll discover realtor farms, and assess the characteristics of sales vs listing price. Real estate transactions tend to be geographically sparse and temporally rare. There is often both a listing and a selling agent in the representing a given property. The sales price is determined by a number of factor. While there has been considerable interest in building pricing models relying on physical parameters, there has been little work done in assessing the contribution of the realtor. The discovery of a 'farm' uses cluster identification methods. These farms can then be analyzed for imputed listing prices and the sales price, both of which are negotiated. The problem: Most real estate analytics deal only with property description and location. Markets can swing quickly from buyer's to seller's advantage, so timing and days on market is important. Agent effects are not well understood and can be a significant factor in determining the actual price. Data source are examined . Python Modules utilized. Application of data science, e.g. modules pycluster, pyclustering, scikit-learn. (the talk is primarily application, not theory) Examples of geographic and hidden affinity Analysis of listing price to appraisal and listing agent effect Analysis of over/under-performance of sales price to listing price Determination of listing agent vs selling agent negotiation skills. Effect of dual agency on pricing. Effect of listing agent Farms on neighborhood pricing. Consideration as a Machine Learning project using Theano or TensorFlow , Keras, Sonnet tflearn Conclusions and future directions Questions data, code, notebooks, and graphics will be included The methodology presented is likely applicable to other low-volume high-value facilitated transactions.
  • このエントリーをはてなブックマークに追加
CONTACT