Talk Submission
If you are interested in attending this talk at PyCon JP 2016, please use the social media share buttons below. We will consider the popularity of the proposals when making our selection.
talk
The recent excitement about recurrent neural networks(ja)
Speakers
Shin Asakawa
Audience level:
Novice
Category:
Science
Description
深層学習の中でもリカレントニューラルネットワークモデルについてお話します。このモデルは言語モデル,音声認識,機械翻訳,対話,質疑応答,画像脚注付け,物語理解,物語生成,プログラミングコード自動生成,などの応用が盛んです。これらに共通する技術的基礎を解説し,加えて Python 実装をご紹介します。
Objectives
Python によるリカレントニューラルネットワークの実際と応用の可能性
Abstract
深層学習の中でもリカレントニューラルネットワークモデルについてお話します。このモデルは言語モデル,音声認識,機械翻訳,対話,質疑応答,画像脚注付け,物語理解,物語生成,プログラミングコード自動生成,などの応用が盛んです。これらに共通する技術的基礎を解説し,加えて Python 実装をご紹介します。
Python によるリカレントニューラルネットワークの実際を示します。物語生成,質疑応答,画像脚注付けの例を示します。
About three decades ago, Francis Crick, the Nobel prize winner, wrote the paper entitled `The recent excitement about neural networks.' This talk is titled after his famous paper, showing great respect to him. Crick criticized that the back-propagation was like an alien technology. However, recent progression about deep neural networks is based upon the back-propagation he criticized then. I would like to pick the two dominant models up in my talk, those are the LSTM (long short-term memory) and the GRU (gated recurrent units). They are enjoying their great successes recently. I will show you several interesting demos in terms of recurrent neural network models as well. Those are including automatic programming language generation, image captioning, story generation, and more. Please have fun with them.